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Abstract. Theoretical work has shown that the timescale separation required for the appli- 
cation of the Smoluchowski, Fokker-Planck and Langevin equations to interacting Brownian 
particles in concentrated liquid solutions may not exist. In particular, it was suggested that 
the current autocorrelation function of the Brownian particles may not decay sufficiently 
quickly in comparison with the intermediate scattering function at appropriate wavevectors. 
Here, molecular dynamics (MD) calculations are performed for ‘hard-soft-sphere’ liquid 
solutions containing Brownian-type particles of large mass and volume. The mass and 
volume ratio are varied systematically. The MD results indicate the following: (i) for solutions 
of equally sized particles, the current autocorrelation function of the massive particles 
decreases sufficiently quickly compared with the intermediate scattering function, thus 
ensuring timescale separation; (ii) massive particles of large volume diluted among light and 
small particles show a time decay of the current autocorrelation function, which approaches 
that of the intermediate scattering function. However, the similarity of the two correlation 
functions reduces with increasing mass ratio. Hence, for asymptotic conditions timescale 
separation can be expected. 

1. Introduction 

A few years ago Masters [l] showed that the timescale separation required for several 
fundamental kinetic equations, such as the Fokker-Planck or Smoluchowski equations, 
may not be valid for interacting Brownian particles in concentrated liquid solutions. As 
the latter equations are predominantly used to treat interacting Brownian particles [2] 
theoretically-for instance, in polymer solutions-it is of particular interest to know 
when the necessary timescale separation is no longer valid. 

Masters showed in his study that the relevant time correlation functions (TCFS) are the 
intermediate scattering function, F(k,  t )  and the longitudinal current autocorrelation, 
Cl(k, t). These functions should decay on sufficiently different timescales to guarantee 
the applicability of the Smoluchowski, Fokker-Planck and Langevin equations. Why 
timescale separation is necessary for the use of these equations is reviewed in the work 
of Masters, so we can omit derivations here. 

Our purpose is to show quantitatively the time behaviour of F(k, t )  and C,(k,  t )  of 
heavy or heavy and large particles in solution with light and small particles of a liquid 
model system. 

2. The model solutions and the molecular dynamics calculations 

Systems of ‘hard-soft spheres’ (HSS) were considered for the molecular dynamics (MD) 
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Table 1. Hard-soft-sphere interaction parameters. 

u Iz  = 3.400 x lo-'" m; see table 2 
ElkB = 120 K; kB = Boltzmann's constant 

Table 2. System parameters of the solutions studied. 

ml 
System N I  N 2  (N/V)u; (amu) m2/m1 u22/u11 Comments 

A1 246 10 
A2 246 10 

251 5 
B1 246 10 

251 5 
241 10 

B2 246 10 
B3 246 10 

251 5 
246 10 

0.800 
0.800 
0.800 
0.3757 
0.3757 
0.4085 
0.3757 
0.3757 
0.3757 
0.3211 

40.00 
40.00 
40.00 
31.25 
31.25 
31.25 
22.86 
20.41 
20.41 
20.41 

16 1 1 0 1 2  = Ho,, + u*2) 
25 1 1 
25 1 1 T* = TkB/e = 1 

8 2 8 N 2  = number of 
8 2 8 Brownian-type 
8 2 8 particles 

16 2.52 16 (NI + N ,  = N )  
25 2.92 25 
25 2.92 25 
25 2.92 25 

Table 3. Technical details of the MD Calculations. 

Number of particles (N) 

Number of steps per run 

Computation time per 1000 steps (Cyber 205) 

256 500 

1.8 x lo5 
Integration time-step 0.5 x 10-14 

25 ( N  = 256) 
3 ( N  = 500) Number of runs 

14.4 ( N  = 256) 
34.0 ( N  = 500) 

NVEp ensemble; V = total volume, E = total energy,p = total momentum 
(Stoermer-Verlet integration scheme) 

calculations. The interaction of the particles was assumed to be of the form 

where a, p indicate the interaction between species, u,@(r) denotes the potential energy 
depending on the separation, and E and oaB denote the energy and volume parameters, 
respectively. The interaction parameters are listed in tables 1 and 2 for the solution types 
considered herein. Use of the HSS system has a lot of advantages [3]: for example, the 
temperature is a scaling parameter, the HSS system approximates the HS system well and 
there are no problems due to cut-off separations. Solutions containing total numbers of 
particles of 256 and 500 were considered. Of these particles 5 or 10 were chosen as 
Brownian-type molecules. A reduced density of n* = a:l N/V = 0.8 was chosen for the 
isotopic mixtures (systems A) corresponding to liquid density. For solutions with dif- 
ferent volume ratios of the particle species, we fixed the reduced density in the one-fluid 
approximation: n,* = U: N / V ,  where U: is defined by the expression 

2 

0% = 2 x,xpa& x, = mole fraction. 
,= 1.p= 1 

Because of the bulky particles we chose a density smaller than the liquid density in 
these cases to facilitate equilibration of the MD system. The influence of the density upon 
the results was, however, tested. A compilation of all the systems and parameters studied 
is given in table 2. 
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Our MD calculations were performed in the manner extensively discussed in [4]. 
Some useful details of the present calculations are summarised in table 3. Note, however, 
that we consider here collective, wave-vector-dependent quantities for which MD runs 
of lo5 time-steps are required in order to achieve a statistical accuracy of 0.01-0.03 for 
the normalised time correlation functions to be discussed here. 

3. Scattering functions considered for the MD calculations 

The intermediate scattering function F(k, t )  is defined by the spatial Fourier transform 
of the van Hove function [ 5 ] .  Denoting by p k  the Fourier component of the local density 
p(r,  t ) ,  we may write 

N 

pk = exp(-i k * ri(t>) (1) 
i =  1 

where k denotes the chosen wave vector and r, the space coordinate of a particle i of 
the N-particle system. F(k ,  t )  is then the autocorrelation function (ACF) of the time- 
dependent Fourier component of the local density: 

F(k,  t> = ( l / N ) ( p k ( o > p  - k ( t ) )  (2) 
where ( ) denotes the equilibrium ensemble average. 

Analogous defining expressions hold for the so-called current ACF, C(k,  t), which is 
given by the Fourier components of the local current in the following way. Denoting the 
local velocity by u(r, t )  we obtain the Fourier component from the expression: 

N 

jk,t) = vi(tj exp(-ik. ri(t>).  (3) 
i = l  

Considering only that component of the currentjk that lies in the direction of the wave 
vector, say the z direction, we may write the longitudinal current ACF as follows: 

Cl(k, t )  = (k2/N)(i;(o)jtk(o)* (4) 

The transverse part of the current ACF, C,(k,  t), contains information about visco-elastic 
modes and will therefore not be treated here. 

For a two-component system the total scattering function is composed of three partial 
terms. Denoting these partial functions by F b ( k ,  r )  for the intermediate scattering 
function, we have [5]  

~ ( k ,  t )  = P ( k ,  t )  + 2 P 2 ( k ,  t )  + F22(k,  t )  

where we sum solely over particles of kind NI or N 2  in (1) and (3) to calculate the partial 
functions F"a; (a, B = 1,2) .  Analogous expressions hold for C,(k,  t) .  We are interested 
in the partial correlation functions concerned with the Brownian particles, which we 
choose to denote by F2' or C:' in the following. 

4. MD results and discussion 

4.1. The wave vector range considered for scattering functions 

Masters [l] studied in his work a wave vector range around R,' for p 2 ( k ,  t )  and 
C:'(k, t ) ,  where Ro is the radius of the Brownian particle. Our systems A1-A2 
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H a s s  r a t i o  2 5  
Volume r a t i o  1 

0. 6 

- 0 . 2 - 1 ,  Figure 1. P2(k, t )  and C:’(k, t )  as a function of 
0. 0 2 .  o 4 .  o 6 .  o 8 .  o I O .  o time. ka,, = 1.59. System A2. T* = 1, n,” = 

t i m e  ( p s )  0.8000. 

Table 4. Ratio of the decay times up to l /e of FZ2(k,  t)  and C:2(k, t )  for systems Al-B3. 
~~ 

System N I  N 2  n,” ka,,  tf52IrC22 

AI 246 10 0.8 1.6 19 t 2 
A2 246 10 1.6 18 2 2 

246 10 0.92 19 t 3 
246 5 1.6 18 t 3 

B1 246 10 0.3757 1.17 6.5 t 0.5 
25 1 5 1.57 6.0 2 0.5 
246 10 0.92 6.5 2 0.5 
246 10 0.4085 1.55 7.5 t 1.0 

B2 246 10 0.3757 1.12 8.5 2 0.5 
B3 246 10 0.3757 1.07 9.0 2 0.5 

25 1 5 1.07 8.5 t 0.5 
490 10 1.07 8.0 2 1.0 
490 10 0.4 8.0 2 1.0 
246 10 0.3211 1.02 7.5 t 1.0 

contain massive and fluid particles of the same radius, so we selected wave vectors with 
Iklull = 2 to compare with the findings of Masters. For the systems B1-B3, in which the 
volume of the massive particles changes, we chose wave vectors with (kJol l  = 1, since 
the bulkiest particles occurring in the systems have about three times the radius of the 
liquid particles. Hence the chosen ka-range does indeed correspond to that considered 
by Masters. However, it is, of course, far away from the hydrodynamic region. We shall 
return to this point in our final discussion of the results. 

4.2. Systems AI-A2 with equally sized particles 

The solutions of particles of the same size, of mass ratios 16 and 25-the isotopic 
systems-undoubtedly showed the timescale separation required for the above- 
mentioned kinetic equations to be valid. We display as an example F22(k , t )  and 
C:2(k, t )  of system A2, which has the largest mass ratio, in figure 1. Evidently, the time 
decay of Cf’ is much more rapid than that of F22. In table 4 we compare the decay times 
of both functions up to the value l/e for systems A1 and A2. The results are convincing 
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H a s s  r a t i o  8 
V o l u m e  r a t i o  8 

0. 6 - 

1 . 0  

ACF 

0. 8 

0 .  6 

0. 4 

0.2 

M a s s  r a t i o  2 5  
V o l u m e  r a t i o  2 5  

0. 0 2 .  0 4 .  0 6.0 8 .  0 10. 0 0. 0 2 .  0 4 .  0 6 .  0 8.0 10. 0 
t i m e  ( p s )  t i m e  ( p s )  

Figure2. As in figure 1, but for system B1. ko,, = 
1.17. T* = 1, n: = 0.3757. 

Figure 3. As figure 1, but for system B3. ko,, = 
1.07. T*  = 1, n: = 0.3757. 

and reveal a timescale factor of about 20. As the timescale difference remains constant 
for increasing mass ratio and is furthermore independent of the dilution, our findings 
should also hold for macroscopic systems of this type [6]. 

We have additionally checked the results for different k-values. Although for sig- 
nificantly smaller k, the form of p2  and C:’ alters appreciably, the finally determined 
ratio of the decay times does not depend on the k-value, as table 4 shows. 

4.3. Systems Bl-B3, containing particles of different volume and mass 

The scattering functions p 2 ( k ,  t )  and Cf2(k, t)  of the solutions B1 and B3 are shown as 
examples in figures 2 and 3. Although the time decay differences are not as strong as in 
systems A1 or A2, the time decay of Cf2 is still much steeper than that of p2.  This 
becomes more evident from table 4, where we have summarised the ratio of the decay 
times up to l /e  for all the three systems Bl-B3. While for system B1 with a particle 
volume ratio of 8 the decay time ratio amounts to 6.5, it increases to a value of 9 for the 
system B3 with the largest volume ratio, 25. 

Hence in contrast to the findings for systems A1 and A2, the decay time ratio of F22 
and C:2 grows with increasing volume ratio. Thus for macroscopic systems of this type, 
we can expect that timescale separation will hold, justifying the application of such 
kinetic equations as the Fokker-Planck and Langevin equation. 

We have again investigated the influence of the chosen k-value, the dilution, and the 
total density upon the decay time ratio, t F 2 2 / 2  $. Table 4 contains additionally some of 
these results. While wave vector and dilution effects are completely negligible, the total 
density changes ~ ~ 2 2 / 2 ~ : 2  slightly in the range considered in our study. 

However, as increase of the density leads to enhanced 2 F 2 2 / 2 c ; 2  ratios, our con- 
clusions would hold even more strongly for higher densities than studied by us. 

5. Discussion and conclusions 

Our MD calculations do not support the theoretical estimates of Masters [l], which 
appeared to show that for concentrated liquid solutions of Brownian particles the 
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timescale separation between the intermediate scattering function and the longitudinal 
current autocorrelation function of the Brownian particles may not exist. 

The MD calculations presented herein do not really model macroscopic solutions of 
Brownian particles. 

Neither the extremely high dilution nor the huge volume and mass ratio between the 
liquid and the Brownian particles possible in macroscopic systems can be achieved in 
MD calculations. However, the trends found in our study undoubtedly indicate that large 
particle-volume ratios together with large mass ratios lead to timescale separation. A 
large mass ratio alone suffices as well to produce timescale separation. Thus we may 
conclude that timescale separation between Ct2(k,  t )  and FZ2(k, t )  persists up to macro- 
scopic systems, and the predicted breakdown is not likely to occur. Consequently 
application of kinetic equations like the Smoluchowski equation to liquid solutions of 
interacting Brownian particles is justified with respect to the existence of very different 
timescales. 
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